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We investigate the kinetics of systems in which particles of one species undergo binary fragmentation and
pair annihilation. In the latter, nonlinear process, fragments react at collision to produce an inert species,
causing loss of mass. We analyze these systems in the reaction-limited regime by solving a continuous model
within the mean-field approximation. The rate of fragmentation for a particle of massx to break into fragments
of massesy andx2y has the formxl21 (l.0), and the annihilation rate is constant and independent of the
masses of the reactants. We find that the asymptotic regime is characterized by the annihilation of small-mass
clusters, with the cluster density decaying as in pure annihilation and the average cluster mass as in pure
fragmentation. The results are compared with those for a model with linear mass loss~i.e., with a sink rather
than a reaction!. We also study more complex models, in which the processes of fragmentation and annihila-
tion are controlled by mutually reacting catalysts. Both pair and linear annihilation are considered. Depending
on the specific model and initial densities of the catalysts, the time decay of the cluster density can now be very
unconventional and even nonuniversal. The interplay between the fragmentation and annihilation processes
and the existence of a scaling regime are determined by the asymptotic behavior of the average mass and of the
mass density, which may either decay indefinitely or tend to a constant value. We discuss further developments
of this class of models and their potential applications.@S1063-651X~96!10708-X#

PACS number~s!: 05.20.2y, 02.50.Ey, 82.20.2w

I. INTRODUCTION

Irreversible reaction-diffusion processes, such as aggrega-
tion or annihilation of species, occur in many physical,
chemical, and biological systems. In the past decade they
have been investigated extensively. This followed from the
realization that spatial fluctuations in the reactant densities
slow down the kinetics and lead to an asymptotic behavior at
low dimensions that disagrees with the classical reaction-rate
equations.~The upper critical dimensiondc is defined as the
spatial dimension below which such disagreement occurs.!
Recently, a combined process of aggregation and annihila-
tion of two species has been studied exactly in one dimen-
sion by Krapivsky@1#, and numerically in higher dimensions
by Sokolov and Blumen@2#. A class of related models, but
with an arbitrary number of species, has also been investi-
gated at the mean-field level by Ben-Naim and Krapivsky
@3#. The power-law decay of the cluster densities has been
understood, and in many cases the cluster-mass distributions
have been found to approach universal scaling forms.

Fragmentation is another irreversible kinetic process with
important applications in nature and technology. These in-
clude polymer degradation through shear action@4#, chemi-
cal attack@5#, or exposure to radiation@6#, droplet breakup
@7#, fiber-length reduction@8#, fragmentation of colloidal ag-
gregates@9#, and rock crushing and grinding@8#. New insight
into the statistical mechanics of fragmentation has followed
from the work of Ziff and McGrady@10,11#, who solved

exactly a class of models with different fragmentation ker-
nels.

The aggregation-fragmentation~or reversible-aggrega-
tion! process has been considered by many authors. This has
been applied to studying reversible polymerization, for in-
stance, by van Dongen and Ernst@12# and by Sintes, Toral,
and Chakrabarti@13#. More generally, mean-field approaches
have been used to study the steady-state scaling properties of
reversible aggregation, for example, by Family, Meakin, and
Deutch @14# and by Blackman and Marshall@15#. In both
aggregation annihilation and aggregation-fragmentation pro-
cesses, rich kinetic behaviors arise due to the competing re-
action mechanisms.

In this paper we focus on fragmentation processes with
mass loss. A number of authors have considered models
combining fragmentation andlinear-annihilation processes
~i.e., asink, where a species ‘‘evaporates’’ at a constant rate
in time! ~see, e.g.,@16–18# and references therein!. These
models are relevant, for example, to studying oxidation and
dissolution of solid porous media@17,18#. However, to the
best of our knowledge, the interplay between annihilation
and fragmentation remains unexplored in the case ofbinary-
annihilation reactions. It is this subject with which we are
concerned. The kinetics of these phenomena arenonlinear,
and therefore more complex and, in principle, more difficult
to analyze. Fragmenting systems where fragments react at
collision ~maybe in the presence of some agent! to produce
an inert species would yield potential applications of these
combined processes. We investigate, at the mean-field level,
a class of ~nonlinear! annihilation-fragmentation models,
aimed at elucidating the competition between these pro-
cesses. For all models considered we include, for compari-
son, an analysis of the corresponding model with linear an-
nihilation ~a sink!.

*Present address: BioSS, The University of Edinburgh, James
Clerk Maxwell Building, The King’s Buildings, Edinburgh EH9
3JZ, U.K. Electronic address: joao@bioss.sari.ac.uk
†Electronic address: G.J.Rodgers@brunel.ac.uk

PHYSICAL REVIEW E AUGUST 1996VOLUME 54, NUMBER 2

541063-651X/96/54~2!/1290~8!/$10.00 1290 © 1996 The American Physical Society



In the simplest situation of a single species, the cluster
density decays as in the case of pure annihilation, while the
cluster-mass distribution approaches an exponential scaling
distribution. An exponential decay of the scaling distribution
has also been found in pure fragmentation, aggregation an-
nihilation @3,1#, and reversible aggregation@14#. To allow for
more interesting, and possibly more realistic behavior, we
introduce additional species that work as catalysts for anni-
hilation and/or fragmentation; reactions between the cata-
lysts are also allowed for. We find that the density decay of
the main species can be surprisingly unconventional, de-
pending on the specific model and on the initial densities of
the catalysts. The decay may be universal but contain loga-
rithmic factors, or it may contain a power law in time with a
nonuniversal exponent that depends on the reaction rates.
The interplay between annihilation and fragmentation and
the existence of a scaling regime are determined by the as-
ymptotic behavior of the mass density and typical cluster
mass. These may either decay indefinitely or tend to a con-
stant value, depending on the relative amounts of annihila-
tion and fragmentation catalysts.

This paper is organized as follows. In Sec. II we introduce
and solve a model with single-species fragmentation annihi-
lation where the fragmentation kernel has a rather general
form. The results for the corresponding model with linear
annihilation are stated for comparison. In Sec. III we include
catalysts in our model and solve it for general time depen-
dences of the catalysts. Specific asymptotic results are pre-
sented in the case where the fragmentation and annihilation
catalysts mutually annihilate. The conclusions and further
comments and suggestions are given in Sec. IV.

II. SINGLE-SPECIES ANNIHILATION AND
FRAGMENTATION

A. Nonlinear annihilation „model 1…

The more elementary model combining the processes of
pair annihilation and fragmentation is that involving a single
‘‘molecular’’ species. This is described by the binary reac-
tion scheme

Ai1Aj→ inert, Ai1 j→Ai1Aj , ~1!

whereAi denotes a cluster consisting ofi monomers of spe-
ciesA. The following calculations could be repeated for a
discrete model, but for analytical convenience we shall take
the continuous limit, which is standard practice@11,19#.

Let a(x,t) be the density distribution of cluster masses~or
sizes! x at time t, and

An~ t !5E
0

`

dxxna~x,t ! ~2!

its moments. In particular, the zeroth and first moments,
A(t)[A0(t) andA1(t), denote thetotal number densityof
clusters and thetotal mass density, respectively. For simplic-
ity, we consider linear fragmentation~driven by a homoge-
neous external agent@19#!, neglect multiple breakup, and
take the rate that a cluster of massx breaks into clusters of
massx2y andy, F(y,x2y), to be a constant~which we set
to unity by a rescaling of time!. Hence, the total rate of

fragmentation of any cluster,*0
xdyF(y,x2y), is equal to its

massx. We also envisage the simplest possible reaction,
where two clusters of any mass mutually annihilate upon
encounter at a rate independent of their masses. Later, we
shall see how to generalize our results for a kernel of the
form F(y,x2y)5xl21, independent of the masses of the
fragments.

Treating the annihilation term within the mean-field de-
scription, which is valid in the reaction-controlled regime,
the kinetic equation fora(x,t) reads

ȧ~x!52xa~x!12E
x

`

dya~y!2Ja~x!A, ~3!

whereJ/2 is the relative rate of annihilation~equal rates of
fragmentation and annihilation correspond toJ52). A set of
nonlinear equations for the moments ofa(x) follows imme-
diately:

Ȧn5
12n

11n
An112JAnA. ~4!

A closed set of equations is found for the first two moments,

Ȧ5A12JA2, ~5!

Ȧ152JAA1 , ~6!

while the higher moments obey an infinite hierarchy of equa-
tions, which are, apparently, not soluble. The absence of a
linear term in~6! is a reflection of the conservation of mass
in the fragmentation process. Adopting more general rates of
fragmentation and annihilation, sayxl and (xy)a, respec-
tively, would yield the following generalization of~4!:

Ȧn5
12n

11n
An1l2JAn1aAa . ~7!

Clearly, no closed set of equations can be obtained forA and
A1, unless l51 and a50, which justifies our present
choice.

To solve forA(t) andA1(t), we proceed as follows. From
~5! and ~6!, the cluster average mass, M (t)[A1(t)/A(t),
obeys the equation

Ṁ52M2, ~8!

with the solution

M ~ t !5
1

d1t
.
1

t
~ t→`!, ~9!

whered[A(0)/A1(0)51/M (0). Using this result, Eqs.~5!
and ~6! can be solved to give

A~ t !5
A~0!1A1~0!t

11J@A~0!t1A1~0!t2/2#
.

2

Jt
, ~10!

A1~ t !5
A~ t !

d1t
.

2

Jt2
. ~11!
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The asymptotic behavior in~10! and ~11!, and hereafter,
holds at larget.

To determine the mass distributiona(x,t), we map the
problem onto a pure fragmentation one using the auxiliary
function

b~x,t ![a~x,t !expFJE
0

t

dt8A~ t8!G . ~12!

The exponential factor is known and from~10! we see im-
mediately that

expFJE
0

t

dt8A~ t8!G511J@A~0!t1A1~0!t2/2#. ~13!

The functionb(x,t) obeys a standard fragmentation equa-
tion; i.e., it is the same as~3! but without the nonlinear
annihilation term. Its general solution is well known@10,20#,
and can be written as

b~x,t !5S b~x,0!1E
x

`

dyb~y,0!@2t1t2~y2x!# D exp~2tx!.

~14!

We find it easier and more illustrative, however, to work
from a particular initial condition, and then to extract the
asymptotic, universal behavior from the special solution ob-
tained. We adopt the exponential initial distribution

a~x,0!5b~x,0!5b0exp~2b0x!, ~15!

whereb05d andb05A(0)d. The corresponding solution is
obtained by substituting~15! into ~14! or, equivalently, at-
tempting the ansatzb(x,t)5b(t)exp@2b(t)x# in the equation
for b(x,t) @21#. This gives, after including the time-
dependent factor~13!,

a~x,t !5
A1~0!~d1t !2

11J@A~0!t1A1~0!t2/2#
exp@2~d1t !x#

5
A~ t !

M ~ t !
exp@2~d1t !x#. ~16!

As t→`, a(x,t).(2/J)exp(2tx) becomes independent of
the initial condition. This universal asymptotic behavior can
also be obtained by looking for a scaling solution of the form

a~x,t !5M2wf~z!, z5x/M , ~17!

which we expect to hold for general initial conditions, in the
regime whent is large andx is small, withxt an arbitrary
constant. From~10! and ~11! at larget, we findw50. Re-
placinga by f in Eq. ~3! and taking the limitt→` yields a
linear differential equation with the solution

a~x,t !5f~z!5
2

J
exp~2z!. ~18!

One can calculate all the moments ofa(x,t) given by the
special solution~16!. This yields forA(t) andA1(t) exactly
the same expressions as in~10! and ~11!, which hold for
general initial conditions~One can check that this is also true
for modified exponential initial conditions, e.g.,

xpexp@2b0x#.!. Since Eq.~4! for all moments is recursive, we
conclude that the special solution~16! must have the same
moments as the general solution. Hence, we did not need to
solve forA(t) in the first place; rather, we could have solved
self-consistently forA(t) from this special distribution. The
rationale is as follows: that one may be able to determine a
particular mass distribution even whenA(t) is not knowna
priori , i.e., even when there is not a closed set of equations
as in the more general case of Eq.~7!.

With this insight, we shall now solve the problem for a
more general fragmentation kernel,F(y,x2y)5xl21, with
l.0. There is no reason why the previous statement should
not hold here; i.e., we expect that for generall a particular
exponential solution will have the same moments as the gen-
eral solution. Equation~3! now becomes

ȧ~x!52xla~x!12E
x

`

dyyl21a~y!2Ja~x!A. ~19!

Once again we use the auxiliary functionb(x,t), given by
~12!, although now the exponential factor is not known. This
gives a pure-fragmentation equation forb(x,t),

ḃ~x!52xlb~x!12E
x

`

dyyl21b~y!, ~20!

which has a known, but complicated, general solution@10#. It
has been proven thatl.0 is a necessary and sufficient con-
dition for b(x,t) to have a scaling, universal behavior
@19,22#. We are allowed, therefore, to deduce this behavior
from a special solution to~19!. A simple solution with expo-
nential form@whose initial condition is an obvious generali-
zation of ~15!# is

b~x,t !5
A1~0!l

G~2/l!
~b01t !2/lexp@2~b01t !xl#, ~21!

with moments

Bn~ t !5
A1~0!Ln11 /L2

~b01t !~n21!/l . ~22!

In ~21! and ~22! appropriate normalization has been used.
We now have

b0
1/l5dL2 , b05b0

2/l A1~0!l

G~2/l!
, ~23!

with the convenient notation

Lp5Lp~l![
G~p/l!

G~1/l!
. ~24!

To find the explicit solution to the problem, we must de-
termine the density of clustersA(t) self-consistently. From
~22! and the transformation~12! we obtain an integral equa-
tion. This can be recast as the differential equation
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Ȧ5
A

l~b01t !
2JA2, ~25!

with the solution

A~ t !5
A~0!@11t/b0#

1/l

11JA~0!b0@l/~11l!#@~11t/b0!
~11l!/l21#

.
11l

l

1

Jt
~ t→`!. ~26!

It is easy to see that exp(J*0
t dt8A) is simply the denominator

of A in ~26!. From this,~12!, and~22!, we find

M ~ t !5
L2

~b01t !1/l
;

1

t1/l
~ t→`!,

An~ t !5Ln11

A~ t !

~b01t !n/l
;

l11

l

1

Jt11n/l , ~27!

a~x,t !5
lL2

G~1/l!

A~ t !

M ~ t !
exp@2~b01t !xl#;

exp@2zl#

JtM~ t !
,

with z5L2x/M (t). All results reduce to the previous ones if
we set l51. Apart from numerical factors, the essential
modifications in the asymptotics can be attributed to the time
dependence of the average cluster mass,M;t21/l, and the
dependence ofa(x,t) on the scaling variablez. We see that
an increase inl slows down the decay ofM . This follows
from the resulting decrease in the rate of fragmentation of
small fragments.

The mass distribution in~27!, or ~18!, is peaked around
z50, showing that the majority of the clusters have vanish-
ingly small mass at late times due to fragmentation. The
factor 1/J indicates that if the annihilation rate increases the
mass and cluster densities should decrease. The cluster den-
sity A(t) is the only moment whose decay is independent of
l. We recall that in pure annihilation processesA.1/Jt,
which differs from Eq.~26! only by a factor of (11l)/l,
while the cluster-mass distribution remains invariant in time
apart from an overall time-dependent factor. The typical
fragment massM (t), on the other hand, is always indepen-
dent of the annihilation rateJ @Eq. ~8!# and is asymptotically
the same as in pure annihilation, i.e., it becomes independent
of A(0) andA1(0).

Our results indicate, therefore, that at late times the
fragmentation-annihilation process consists essentially of the
annihilation of small-mass clusters. Furthermore, the frag-
mentation and annihilation processes effectively decouple
from each other. This leads us to conjecture that in this case
the upper critical dimension is two, as in pure annihilation.
That is clearly true for a discrete system, where there is a
minimum cluster mass and the fragmentation process ends
before all particles annihilate.

B. Linear annihilation „model 2…

Here, we briefly discuss model 2: a model with the same
fragmentation process as model 1 but withlinear annihila-
tion. In this case there are no binary reactions and single
clusters annihilate at a constant rate in time. We introduce

this model for comparison with model 1 and because in Sec.
III we shall make an interesting generalization of it.

The kinetic equation for the cluster-mass distribution is
similar to~19!, but with the annihilation term replaced by the
linear term2Ja(x). This yields a trivial modification of the
pure-fragmentation model~20! for generall: the transforma-
tion ~12! is replaced byb(x,t)5a(x,t)exp@Jt#, leading to a
simple extra exponential factor in the results. Working once
again with the special solution~21!, which corresponds to
the initial conditiona(x,0)5b(x,0)5b0exp@2b0x

l#, we ob-
tain

A~ t !5
A1~0!

M ~ t !
exp@2Jt#;t1/lexp@2Jt# ~ t→`!,

An~ t !5Ln11

A~ t !

~b01t !n/l
;
exp@2Jt#

t ~n21!/l , ~28!

a~x,t !5
lL2

G~1/l!

A~ t !

M ~ t !
exp@2~b01t !xl#

;
exp@2zl#exp@2Jt#

M ~ t !2
,

whereM (t) is the same as in model 1@Eq. ~27!#. Similar
remarks about the dependence onl apply here.

III. ANNIHILATION AND FRAGMENTATION WITH
CATALYSTS

Model 1 has elucidated some of the features in the inter-
play between the fragmentation and annihilation processes.
However, it appears to have a somewhat unrealistic draw-
back: when two clusters of speciesA meet they react to
produce a new, inert species, rather than merging into a
larger cluster. Such a reaction would seem plausible, though,
if another species, sayC, was involved. In a reaction of the
form Ax1C→ inert, orAx1Ay1C→ inert, the kinetic equa-
tions ofA andC would be coupled together. To be able to
make progress, however, we envisage a situation where the
reactions are induced by the presence ofC but C does not
take part in the reactions; i.e.,C is a catalyst. In Sec. II, it
was implicitly assumed that annihilation was driven by a
catalyst of constant concentration. Here we shall allow the
concentration ofC to vary in time. Catalysts play a key role
in chemical, biological, and ecological systems~see, e.g.,
@23,24#!, so the study of this class of models is potentially of
great interest.

With these insights, let us consider the following two
models where the fragmentation ofA is controlled by a cata-
lyst B,

Ax1y1B→Ax1Ay1B, ~29!

and the annihilation ofA is induced by a catalystC. With a
nonlinear annihilationreaction~modelC1!,

Ax1Ay1C→ inert1C, ~30!

while with a linear annihilation reaction~modelC2!

Ax1C→ inert1C. ~31!
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In addition, we allow the catalysts to undergo the following
annihilation reaction, at rateR:

B1C→
R
inert. ~32!

In the reaction-controlled regimeB(t) andC(t), the concen-
trations of speciesB andC, have the following time depen-
dence~see, e.g.,@25#!:

B~ t !5C~ t !5
B~0!

11B~0!Rt
@B~0!5C~0!#,

B~ t !5
DB~0!exp@2DRt#

C~0!2B~0!exp@2DRt#
,

C~ t !5D1B~ t ! @C~0!.B~0!#, ~33!

with D[uC(0)2B(0)u. Note that if B(t) and C(t) were
constant in time, then, via a trivial rescaling, modelsC1 and
C2 would reduce to models 1 and 2 without catalysts.

A. Method of solution

We shall solve the generalizations of models 1 and 2, with
general values ofl, following a similar procedure to that
used in Sec. II. The essential difference now is that a formal
time variable has to be defined,t(t), which plays the role of
time t in the previous models.

Model C1, for nonlinear annihilation in the presence of
catalysts, is defined by the reaction schemes~29! and ~30!.
The kinetic equation for the cluster-mass distribution, which
generalizes~19!, is

ȧ~x!5F2xla~x!12E
x

`

dyyl21a~y!GB2Ja~x!AC, ~34!

while the equation for the moments ofa(x,t) now reads@cf.
~4! with a50#

Ȧn5
12n

11n
An1lB2JAnAC. ~35!

For l51, a closed set of equations can be obtained once
again, from which the general solution forA(t) andA1(t)
can be found. For generall, we map ~34! onto a pure-
fragmentation equation using the transformation@cf. ~12!#

b~x,t ![a~x,t !expFJE
0

t

dt8A~ t8!C~ t8!G , ~36!

and redefining time as

t~ t !5E
0

t

dt8B~ t8!. ~37!

Clearly, one only expects a scaling regime to occur if
t(t)→` ast→`. Thenb(x,t) obeys Eq.~20!. As usual, we
work with the special exponential solution~21! ~now with
t replacingt). Inserting this solution into~36!, integrating
overx, and differentiating once with respect to timet yields
the self-consistent equation@cf. ~25! and ~26!#

Ȧ5
AB

l~b01t!
2JA2C, ~38!

with the solution

A~ t !5
@A1~0!/L2#~b01t!1/l

11J@A1~0!/L2#*0
t dt8C~ t8!@b01t~ t8!#1/l

. ~39!

As in Sec. II, exp(J*0
t dt8AC) is simply the denominator of

A in ~39!. Hence, from~21!, ~22!, and~36! we find

M ~ t !5
L2

~b01t!1/l
,

An~ t !5Ln11

A~ t !

~b01t!n/l
, ~40!

a~x,t !5
lL2

G~1/l!

A~ t !

M ~ t !
exp@2~b01t!xl#.

The essential differences from~27! are due to the presence of
t(t).

We now turn to modelC2, for linear annihilation in the
presence of catalysts, defined by the reaction schemes~29!
and ~31!. The kinetic equation fora(x,t) is similar to ~34!,
but with the nonlinear term replaced by2Ja(x)C. Defining

b~x,t ![a~x,t !expFJE
0

t

dt8C~ t8!G , ~41!

and using the same formal time variablet(t), b(x,t) obeys
Eq. ~20! once again, and we work with the special exponen-
tial solution as before. The results, therefore, follow from
~21! and ~22! ~with t replacing t) multiplied by
exp@2J*0

t dt8C#. This gives@cf. ~28!#

A~ t !5
A1~0!

M ~ t !
expF2JE

0

t

dt8C~ t8!G , ~42!

with M (t), An(t), anda(x,t) still given by ~40!.

B. Asymptotic results for B1C˜ inert

The results derived in Sec. III A for modelsC1 andC2
hold for any time dependence of the catalysts. To obtain the
asymptotic behaviors corresponding to catalystsB and C
mutually annihilating according to~32!, we insert the mean-
field expressions~33! into the previous results and look for
the dominant contributions in the limitt→`. There are three
qualitatively different cases, depending on the relative values
of the initial densities of the catalysts.

1. B„0…5C„0…

With balanced amounts of the two catalysts, we have

t5 ln@11RB~0!t#1/R. ln~ t1/R! ~ t→`!. ~43!

This gives
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M ~ t !.
L2R

1/l

@ ln~ t !#1/l
~ t→`!,

An~ t !;M ~ t !nA~ t !, ~44!

a~x,t !;
A~ t !

M ~ t !
exp@2zl#, z5L2x/M ~ t !

for modelsC1 andC2, and

A~ t !.H 11l

l

R

J ln~ t !
;

1

ln~ tJ/R!
~modelC1!

A1~0!

M ~ t !

1

@B~0!Rt#J/R
;

@ ln~ t !#1/l

tJ/R
~modelC2!.

~45!

As in models 1 and 2 without catalysts, the late-time regime
is dominated by the annihilation of small-mass clusters, the
two underlying processes decouple from each other, and
there is scaling. The cluster-number density, however, de-
cays logarithmically in modelC1 and with a nonuniversal
power law in modelC2: the nonuniversal exponent depends
on the annihilation ratesJ andR of speciesA and of the
catalysts. We conclude that, although different time depen-
dences emerge, the balance between the annihilation and
fragmentation processes in this symmetric case is analogous
to that occurring in the absence of catalysts.

2. B„0…>C„0…

If there is a majority of the fragmentation catalyst the
auxiliary timet behaves essentially liket:

t5Dt1 ln$@B~0!2C~0!exp~2DRt!#/D%1/R

.Dt ~ t→`!. ~46!

The key point to notice when evaluating the integral in the
denominator of~39! and the exponential term in~42! is that
*0
t dt8C(t8)→ ln@B(0)/D#1/R as t→`. This yields, for models
C1 andC2,

M ~ t !.
L2

~Dt !1/l
~ t→`!,

A~ t !.@A1~0!/L2#F~l!~Dt !1/l, ~47!

A1~ t !→A1~0!F~l!,

a~x,t !;
1

M ~ t !2
exp@2zl#, z5L2x/M ~ t !,

where

F~l!5H 1

11JA1~0!I` /L2
~modelC1!

S D

B~0! D
J/R

~modelC2!,

~48!

I`[E
0

ln@B~0!/D#1/R

dx@b01x1 ln$C~0!/@B~0!

2Dexp~Rx!#%1/R#1/l. ~49!

In this case the fragmentation process is much faster than the
annihilation one, which is suppressed as the mass density
tends to a fractionF(l) of its initial value A1(0). Once
again there is a scaling regime. In conclusion, the asymptotic
behaviors of modelsC1 andC2 are similar to that of a pure
fragmentation process with rescaled initial mass density
A1(0)F(l) and rescaled timeDt, whereD is the residue of
catalystB. Hence, the smaller the value ofD the longer the
time needed to reach this regime. The value ofF(l) is de-
termined not only by the kinetic parametersJ, R, andl, but
also by the initial densitiesB(0) andC(0).

3. C„0…>B„0…

With a majority of the annihilation catalystt tends to a
finite value,

t5 ln$@C~0!2B~0!exp~2DRt!#/D%1/R

→t`5 ln@C~0!/D#1/R ~ t→`!. ~50!

Noticing that the integral in the denominator of~39!,
*0
t dt8C(t8)@b01t(t8)#1/l, is dominated by the large-t con-
tribution, we obtain

M ~ t !→M`5L2 /~b01t`!1/l ~ t→`!,

An~ t !;A~ t !, ~51!

a~x,t !;A~ t !exp@2~b01t`!xl#

for modelsC1 andC2, and@cf. ~26! and ~28!#

A~ t !.H 1

JDt
~modelC1!,

A1~0!

M`
S D

C~0! D
J/R

exp@2JDt# ~modelC2!.

~52!

Here, the annihilation process dominates over fragmentation.
The latter is suppressed as the average cluster mass tends to
a nonzero valueM` and the mass distribution becomes sta-
tionary ~up to an overall time-dependent factor! and identical
to its initial form a(x,0). This form ofa(x,t) follows from
all fragments being equally likely to annihilate, and the pref-
actorA(t)→0 indicates the eventual loss of all mass. This
situation differs fromB(0)5C(0), where annihilation oc-
curs between increasingly smaller clusters. As expected,
there is no scaling regime sincet has a finite limit. In addi-
tion, the behavior ofa(x,t) may not be universal in this case.
In conclusion, the asymptotic behavior of modelsC1 and
C2 is similar to that of a pure-annihilation process with
M5M` and rescaled timeDt: the process being a binary
reaction for modelC1, and linear with initial massA1(0)
3@D/C(0)#J/R for modelC2. The asymptotic average mass
M` is determined by the kinetic parametersR andl, and by
the initial valuesA(0)/A1(0), B(0), andC(0).
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It should be stressed that the validity of the continuous-
mass description used throughout is subject to restrictions in
the long-time regime. In the casesB(0)5C(0) and
C(0).B(0), where the cluster numberA(t)→0 and the
system eventually reaches an empty state, the description
holds while the system still contains a sufficiently large num-
ber of particles. This condition ensures the smoothness of the
cluster mass distribution. In the casesB(0)5C(0) and
B(0).C(0), where the average cluster massM (t)→0 and
increasingly smaller fragments are produced, the usual re-
strictions to a pure-fragmentation process apply@11#. The
essential difference within a discrete description lies in the
behavior of the density of the smaller fragments, or mono-
mers.

IV. CONCLUSIONS

We have solved a class of fragmentation models with
nonlinear mass loss, at the mean-field level, and elucidated
the competition between fragmentation and annihilation pro-
cesses. Simultaneously, we have analyzed the corresponding
models with linear mass loss. Although the solutions for the
cluster-mass distribution hold for exponential initial condi-
tions, we expect their moments to be identical to those of the
corresponding general solutions.

Asymptotically, models 1 and 2~without catalysts! are
characterized by the annihilation of small-mass clusters and
by the effective decoupling of the two underlying processes.
We believe that in this case the upper critical dimension is 2
~but see@14#!.

ModelsC1 andC2, with fragmentation and annihilation
catalysts, have been solved for a general time dependence of
the catalyst densities. The linear annihilation model, in par-
ticular, shows much more interesting and less trivial behav-
ior in this case. WhenB andC undergo mutual annihilation,
we have found that different interplays arise between the two
intervening processes depending on the initial densities
B(0) andC(0). As aresult, unconventional and/or nonuni-
versal asymptotic behavior may occur@B(0)5C(0)#, or the
scaling regime may be absent@C(0).B(0)#. In these mod-
els, the upper critical dimension is likely to be 4, as a con-
sequence of the spatial structure induced by the catalytic re-
actants at late times: inB-rich regions fragmentation
~annihilation! will be frequent~absent! producing a high con-
centration ofA, while in C-rich regions the roles of these
processes will be reversed, producing voids ofA. With si-
multaneous fragmentation and annihilation it seems difficult,
however, to develop more quantitative arguments determin-
ing dc . In any case, new, unusual behavior should also ap-
pear atlower dimensionsin the presence of catalysts. Even
here, the mean-field description may prove adequate up to
moderate times, before significant spatial fluctuations set in.

Instead of the mean-field expressions~33! for the catalyst
densities, one may use the corresponding ones in the
diffusion-controlled regime (d,4), which can be deduced,
e.g., from Ref.@25#. In addition, other reactions or time de-
pendences of the catalysts may be investigated. One may
even replace one of the catalysts by aninhibitor. For these
purposes one simply needs to use the results of Sec. III A. In
practice, it may be that both linear and nonlinear mass-loss
processes operate. In such cases, models 1 and 2, orC1 and

C2, would merge to yield a model with linear and nonlinear
annihilation terms. It should be possible to solve such a
model using the methods of Secs. II and III. It may also be
that one has a source rather than a sink term, in which case
the previous terms will have opposite signs leading to a com-
petition between linear and nonlinear contributions.

Further directions of work are possible, in addition to
those just mentioned. One may look for mass-dependent re-
action rates, the generic form for the annihilation terms then
being 2Ja(x)*0

`dy f(x,y)a(y) for model 1, and
2Ja(x) f (x) for model 2. @In Sec. II A we mentioned the
casef (x,y)5(xy)a.# Another research avenue would be to
investigate two species, sayA andB, undergoing fragmen-
tation and mutual annihilation. WhenA(0)5B(0) this
model is identical to the single-species model of Sec. II A.
With two species, a ‘‘charge’’ conservation law may also be
present, e.g.,Ax1By→Ax2y for x.y (By2x for y.x) @1#.
We have found@26# that in the absence of such a constraint
both cluster densitiesA(t) and B(t) decay as 2/(Jt)
(l51), independently of the initial massesA1(0) and
B1(0); i.e., there is no mass difference residue.

We expect the classes of models studied here, and their
further developments, to have applications in various sub-
jects, such as physics, chemistry, biology, and, to some ex-
tent, population dynamics~see, e.g.,@23,24#!. Model 1~with-
out catalysts! is suitable to describe fragmenting systems
with nonlinear~reaction! mass loss. ModelsC1 andC2, on
the other hand, have the potential to describe a broad range
of phenomena, with linear or nonlinear mass loss and with
arbitrary time dependences of the catalysts. We describe one
particularly important generalization to these models. In
many processes of industry, heterogeneous chemistry, or bio-
chemistry, such as food processing or food digestion~where
the catalysts are enzymes!, the efficiency of the reactions
may depend on the available surface area of the reacting
fragments~see, e.g.,@27#!. It would be of great interest,
therefore, to develop fragmentation models whose clusters
are characterized not only by theirvolume~or mass!, but also
by their surface area. From these, one could then build up
fragmentation-annihilation models with surface-area-
dependent annihilation rates. An obvious difficulty in con-
structing such models is the dependence of the surface area
on the shape of the fragments. First steps towards this goal
have been taken in very recent work on multivariable frag-
mentation@28#.

It is interesting to note that there is some resemblance
between fragmentation-annihilation processes and
branching-annihilating random walks@29#. In the latter, par-
ticles diffuse and annihilate upon encounter and each particle
gives birth ton offspring, at prescribed rates. A difference,
though, is that the particles do not have a mass distribution.
Depending on the branching and annihilating rates, these
systems may evolve towards an empty state or an active
steady state. The existence of phase transitions in the long-
time behaviour has been investigated for different values of
n @29#. Depending on the densities of catalysts~which con-
trol the rates of the two processes involved!, we have found
that modelsC1 andC2 can also exhibit quite opposite as-
ymptotic behavior:A→0 for C(0)>B(0), andA→` for
B(0).C(0). Although we have not seen evidence for states
characterized by steady values of the cluster-number density
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A(t), steady-state values were obtained for the cluster-mass
density A1(t) @B(0).C(0)# and for the average cluster
massM (t) @C(0).B(0)#.

In conclusion, we hope that this paper will stimulate fu-
ture work on fragmentation-annihilation processes, and be-
lieve that fruitful applications of the present or related mod-
els ~especially those with catalysts!, can be found in various
fields.
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