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We investigate the kinetics of systems in which particles of one species undergo binary fragmentation and
pair annihilation. In the latter, nonlinear process, fragments react at collision to produce an inert species,
causing loss of mass. We analyze these systems in the reaction-limited regime by solving a continuous model
within the mean-field approximation. The rate of fragmentation for a particle of mtmsbreak into fragments
of massey andx—y has the formx* ! (A>0), and the annihilation rate is constant and independent of the
masses of the reactants. We find that the asymptotic regime is characterized by the annihilation of small-mass
clusters, with the cluster density decaying as in pure annihilation and the average cluster mass as in pure
fragmentation. The results are compared with those for a model with linear masgdasaith a sink rather
than a reaction We also study more complex models, in which the processes of fragmentation and annihila-
tion are controlled by mutually reacting catalysts. Both pair and linear annihilation are considered. Depending
on the specific model and initial densities of the catalysts, the time decay of the cluster density can now be very
unconventional and even nonuniversal. The interplay between the fragmentation and annihilation processes
and the existence of a scaling regime are determined by the asymptotic behavior of the average mass and of the
mass density, which may either decay indefinitely or tend to a constant value. We discuss further developments
of this class of models and their potential applicatidi®L063-651X%96)10708-X]

PACS numbeps): 05.20-y, 02.50.Ey, 82.20-w

I. INTRODUCTION exactly a class of models with different fragmentation ker-
nels.

Irreversible reaction-diffusion processes, such as aggrega- The aggregation-fragmentatiofor reversible-aggrega-
tion or annihilation of species, occur in many physical,tion) process has been considered by many authors. This has
chemical, and biological systems. In the past decade thelyeen applied to studying reversible polymerization, for in-
have been investigated extensively. This followed from thestance, by van Dongen and Erfi&2] and by Sintes, Toral,
realization that spatial fluctuations in the reactant densitieand Chakrabarf{il3]. More generally, mean-field approaches
slow down the kinetics and lead to an asymptotic behavior ahave been used to study the steady-state scaling properties of
low dimensions that disagrees with the classical reaction-rateeversible aggregation, for example, by Family, Meakin, and
equations(The upper critical dimensiod, is defined as the Deutch[14] and by Blackman and Marshdll5]. In both
spatial dimension below which such disagreement occursaggregation annihilation and aggregation-fragmentation pro-
Recently, a combined process of aggregation and annihilazesses, rich kinetic behaviors arise due to the competing re-
tion of two species has been studied exactly in one dimenaction mechanisms.
sion by Krapivsky{1], and numerically in higher dimensions  In this paper we focus on fragmentation processes with
by Sokolov and Blumeifi2]. A class of related models, but mass loss. A number of authors have considered models
with an arbitrary number of species, has also been investeombining fragmentation antinear-annihilation processes
gated at the mean-field level by Ben-Naim and Krapivsky(i.e., asink where a species “evaporates” at a constant rate
[3]. The power-law decay of the cluster densities has beein time) (see, e.g.[16—18 and references therginThese
understood, and in many cases the cluster-mass distributiomsodels are relevant, for example, to studying oxidation and
have been found to approach universal scaling forms. dissolution of solid porous medid.7,18. However, to the

Fragmentation is another irreversible kinetic process withbest of our knowledge, the interplay between annihilation
important applications in nature and technology. These inand fragmentation remains unexplored in the cadairwdry-
clude polymer degradation through shear acfih chemi-  annihilation reactions. It is this subject with which we are
cal attack[5], or exposure to radiatiof6], droplet breakup concerned. The kinetics of these phenomenanaminear,

[7], fiber-length reductiof8], fragmentation of colloidal ag- and therefore more complex and, in principle, more difficult
gregate$9], and rock crushing and grindiig]. New insight  to analyze. Fragmenting systems where fragments react at
into the statistical mechanics of fragmentation has followedtollision (maybe in the presence of some agentproduce
from the work of Ziff and McGrady{10,11, who solved an inert species would yield potential applications of these
combined processes. We investigate, at the mean-field level,
a class of (nonlineaj annihilation-fragmentation models,
*Present address: BioSS, The University of Edinburgh, Jameaimed at elucidating the competition between these pro-
Clerk Maxwell Building, The King's Buildings, Edinburgh EH9 cesses. For all models considered we include, for compari-
3JZ, U.K. Electronic address: joao@bioss.sari.ac.uk son, an analysis of the corresponding model with linear an-
Electronic address: G.J.Rodgers@brunel.ac.uk nihilation (a sink.
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In the simplest situation of a single species, the clustefragmentation of any clustefgdyF(y,x—Y), is equal to its
density decays as in the case of pure annihilation, while thenassx. We also envisage the simplest possible reaction,
cluster-mass distribution approaches an exponential scalinghere two clusters of any mass mutually annihilate upon
distribution. An exponential decay of the scaling distributionencounter at a rate independent of their masses. Later, we
has also been found in pure fragmentation, aggregation ahall see how to generalize our results for a kernel of the
nihilation[3,1], and reversible aggregatiph4]. To allow for  form F(y,x—y)=x""1, independent of the masses of the
more interesting, and possibly more realistic behavior, weragments.
introduce additional species that work as catalysts for anni- Treating the annihilation term within the mean-field de-
hilation and/or fragmentation; reactions between the catascription, which is valid in the reaction-controlled regime,
lysts are also allowed for. We find that the density decay othe kinetic equation foa(x,t) reads
the main species can be surprisingly unconventional, de-
pending on the specific model and on the initial densities of ) o
the catalysts. The decay may be universal but contain loga- a(x)= —xa(x)+2L dya(y) —Ja(x)A, 3
rithmic factors, or it may contain a power law in time with a

nonuniversal exponent that depends on the reaction ratégnere J/2 is the relative rate of annihilatiofequal rates of
The interplay between annihilation and fragmentation am#ragmentation and annihilation correspondite2). A set of

the existence of a scaling regime are determined by the agjpnjinear equations for the momentsai) follows imme-
ymptotic behavior of the mass density and typical C|U5terdiately:

mass. These may either decay indefinitely or tend to a con-
stant value, depending on the relative amounts of annihila- . 1-n
tion and fragmentation catalysts. A”:m
This paper is organized as follows. In Sec. Il we introduce

and solve a model with single-species fragmentation annihip ¢jnsed set of equations is found for the first two moments
lation where the fragmentation kernel has a rather general ’
form. The results for the corresponding model with linear A=A1—JA2 (5)
annihilation are stated for comparison. In Sec. Il we include '
catalysts in our model and solve it for general time depen-
dences of the catalysts. Specific asymptotic results are pre-

sented in the case where the fragmentation and annih”atiovr\]/hile the hiaher moments obev an infinite hierarchv of equa-
catalysts mutually annihilate. The conclusions and furthe 9 y y q

r. .
comments and suggestions are given in Sec. IV. tions, Whlch_ are, apparently, not soluble. The _absence of a
linear term in(6) is a reflection of the conservation of mass

in the fragmentation process. Adopting more general rates of

An+1—JAA. 4

Aj=—JAA, (6)

IIl. SINGLE-SPECIES ANNIHILATION AND fragmentation and annihilation, sag and (xy)®, respec-
FRAGMENTATION tively, would yield the following generalization d#):
A. Nonlinear annihilation (model 1) 1-n
The more elementary model combining the processes of AfmAnﬂ—JAnmAa. )

pair annihilation and fragmentation is that involving a single
“molecular” species. This is described by the binary reac-Clearly

: no closed set of equations can be obtainedfand
tion scheme

A, unlessa=1 and «=0, which justifies our present
Ai+A—inert, A —A+A, (1) ~ choice.

To solve forA(t) andA,(t), we proceed as follows. From
whereA; denotes a cluster consisting iomonomers of spe- (5 and (6), the cluster average massvi(t)=A(t)/A(t),
cies A. The following calculations could be repeated for a©Peys the equation
discrete model, but for analytical convenience we shall take . )
the continuous limit, which is standard practide.,19. M=-M7, ®

Leta(x,t) be the density distribution of cluster masses

sizeg x at timet, and with the solution

- 1
An(t)zfo dxx"a(x,t) 2 M)=57=7 (==, ©)

where §=A(0)/A;(0)=1/M(0). Using this result, Eqs(5)

its moments. In particular, the zeroth and first momentsand(e) can be solved to give

A(t)=Ap(t) and A,(t), denote theotal number densityf
clusters and théotal mass densityrespectively. For simplic- A(0)+A,(0)t
ity, we consider linear fragmentatiddriven by a homoge- A(t)= 1 =,
neous external agentl9]), neglect multiple breakup, and 1+J[A0)t+A,(0)t7/2] It
take the rate that a cluster of mas$reaks into clusters of

massx—y andy, F(y,x—y), to be a constariivhich we set Ay(t) = it): i (11)
to unity by a rescaling of time Hence, the total rate of ! S+t Jt*

(10
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The asymptotic behavior it10) and (11), and hereafter, xPexy—bgx].). Since Eq(4) for all moments is recursive, we
holds at large. conclude that the special solutidh6) must have the same
To determine the mass distributia(x,t), we map the moments as the general solution. Hence, we did not need to
problem onto a pure fragmentation one using the auxiliarysolve forA(t) in the first place; rather, we could have solved
function self-consistently forA(t) from this special distribution. The
. rationale is as follows: that one may be able to determine a
b(x,t)Ea(x,t)ex;{JJ dt’A(t’)}. (120  particular mass distribution even whét) is not knowna
0 priori, i.e., even when there is not a closed set of equations
. ) ) as in the more general case of E@).
The exponential factor is known and frof@0) we see im- With this insight, we shall now solve the problem for a
mediately that more general fragmentation kern&l(y,x—y)=x""1, with
¢ A>0. There is no reason why the previous statement should
ex;{\]f dt’A(t") [=1+J[A(0)t+A,(0)t%2]. (13  not hold here; i.e., we expect that for genexah particular
0 exponential solution will have the same moments as the gen-
The functionb(x,t) obeys a standard fragmentation equa-
tion; i.e., it is the same ag3) but without the nonlinear

eral solution. Equation(3) now becomes
annihilation term. Its general solution is well knoyt0,20, a(x)= —an(x)+2fmdyy}“1a(y)—\]a(x)A. (19)
and can be written as X

b(x,t)=| b(x,0)+ fwdyb(y,O)[2t+t2(y—x)] exp — tx). Once again we use the auxiliary functiMx,t), given by _
X (12), although now the exponential factor is not known. This

(14 gives a pure-fragmentation equation fufx,t),

We find it easier and more illustrative, however, to work .
from a particular initial condition, and then to extract the b(x)=—x}‘b(x)+2f dyy* ~tb(y), (20)
asymptotic, universal behavior from the special solution ob- X
tained. We adopt the exponential initial distribution
which has a known, but complicated, general soluf@j. It

a(x,0)=b(x,0)= Boexp( —bgXx), (19 has been proven that>0 is a necessary and sufficient con-
dition for b(x,t) to have a scaling, universal behavior
[19,22. We are allowed, therefore, to deduce this behavior
from a special solution t619). A simple solution with expo-
nential form[whose initial condition is an obvious generali-
zation of (15)] is

whereby= 6 and 8;=A(0) 4. The corresponding solution is
obtained by substitutingl5) into (14) or, equivalently, at-
tempting the ansata(x,t) = 8(t)exd —b(t)x] in the equation
for b(x,t) [21]. This gives, after including the time-

dependent factof13),
A1(0)(5+1)? AL (0)A
a(x,t)= 15 ITA0) 1 Ag(0) 2] exd — (5+1)x] b(x,t)= m(bo+t)2’}‘exr[—(bo+t)x"], (21)
A(t) .
= Wexq—(5+t)x]_ (16)  with moments
As t—oo, a(x,t)=(2/J)exp(—tx) becomes independent of B, (t)= A1(0)Ani1/A; 22

the initial condition. This universal asymptotic behavior can (b +t)(M D
also be obtained by looking for a scaling solution of the form

In (21) and (22) appropriate normalization has been used.

which we expect to hold for general initial conditions, in the
regime whernt is large andx is small, withxt an arbitrary bIN= A, By—bZh A1(0)N 23
constant. Fron(10) and (11) at larget, we findw=0. Re- 0 2 POTE0 T2
placinga by ¢ in Eqg. (3) and taking the limit—o yields a
linear differential equation with the solution with the convenient notation
2
a(x.t) = $({) = Jexn— ). (19 A _T(pny) 0

p=Ap(M)= NGV SN
One can calculate all the momentsagi,t) given by the

special solutior(16). This yields forA(t) andA,(t) exactly To find the explicit solution to the problem, we must de-

the same expressions as (h0) and (11), which hold for  termine the density of cluste’(t) self-consistently. From

general initial conditiongOne can check that this is also true (22) and the transformatiofil2) we obtain an integral equa-

for modified exponential initial conditions, e.g., tion. This can be recast as the differential equation
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this model for comparison with model 1 and because in Sec.

A= )\(b——l—t)_JAz' (25 11l we shall make an interesting generalization of it.
0 The kinetic equation for the cluster-mass distribution is
with the solution similar to(19), but with the annihilation term replaced by the
linear term—Ja(x). This yields a trivial modification of the
A(0)[1+t/bg]*™ pure-fragmentation modé20) for general\: the transforma-
At)= 1+ IA0)bg[M(1+ M) I[(L+ t/bg) T A 1] tion (12) is replaced byb(x,t)=a(x,t)exdJt], leading to a
simple extra exponential factor in the results. Working once
1+ 1 again with the special solutiof21), which corresponds to
= 51 =) (26)  the initial conditiona(x,0)=b(x,0)= Byexd —bpx], we ob-
tain
It is easy to see that exiftdt’A) is simply the denominator 0
of A in (26). From this,(12), and(22), we find t)= 'i/llit)) exr[—Jt]~t1”‘eX|:[—Jt] (t—ce),
1
2
MO= g™ ~r (%) AD=Ap eI o
n n+l(b0+t)n/>\ t(nfl)h\ ’
A(t) A+l 1
A= Aneafp S~ Ty g (@0 atx )= Mo A extf — (by+ 1)x']
T T(LN) M(t) 0
D= Tan) Mo 0 IM() ! iﬂ](f)xf !

with {= A x/M(t). All results reduce to the previous ones if ) i o
we setA=1. Apart from numerical factors, the essential WhereM(t) is the same as in model [Eq. (27)]. Similar
modifications in the asymptotics can be attributed to the timgemarks about the dependenceompply here.
dependence of the average cluster mags;t~'*, and the
dependence dd(x,t) on the scaling variablé. We see that II. ANNIHILATION AND FRAGMENTATION WITH
an increase inn slows down the decay d¥1. This follows CATALYSTS
from the resulting decrease in the rate of fragmentation of
small fragments.

The mass distribution if27), or (18), is peaked around

Model 1 has elucidated some of the features in the inter-
play between the fragmentation and annihilation processes.
However, it appears to have a somewhat unrealistic draw-
%ack: when two clusters of speciés meet they react to

- . L . roduce a new, inert species, rather than merging into a
factor 10 indicates that if the annihilation rate increases thelarger cluster. Such a reaction would seem plausible, though,

mass and cluster densities should decrease. The cluster d Do nother species, sag, was involved. In a reaction of the
sity A(t) is the only moment whose decay is independent O(zorm AX+C—>inert’ orA’X+Ay+C—>inert the kinetic equa-

A. We recall that in pure annihilation processes-14t, tions of A and C would be coupled together. To be able to

Wh!Ch differs from Eq.(2§) c.)nly. by a fagtor .Of (}.H‘)/.)". make progress, however, we envisage a situation where the
while the cluster-mass distribution remains invariant in time

apart from an overall time-dependent factor. The typicalreaCtiOnS are induced by the presencdCobut C does not
fragment mas#M(t), on the other hand, is always indepen_take part in the reactions; i.eC is a catalyst. In Sec. II, it

s ; . was implicitly assumed that annihilation was driven by a
dent of the ar_1n|h|Iat|on rf'it.é [Eq' (8)] a_nd IS asymptoncally catalyst of constant concentration. Here we shall allow the
the same as in pure annihilation, i.e., it becomes independe

of A(0) andA,(0). Boncentration of to vary in time. Catalysts play a key role

. . in chemical, biological, and ecological systertsee, e.g.,
Our results indicate, therefore, that at late times th 23,24)), so the study of this class of models is potentially of
fragmentation-annihilation process consists essentially of th

N reat interest.
annihilation of small-mass clusters. Furthermore, the frag-

; L . With these insights, let us consider the following two
mentation and ann!h|lat|on Processes effecuvely de.COUpl?nodels where the fragmentation Afis controlled by a cata-
from each other. This leads us to conjecture that in this casl?/St B

the upper critical dimension is two, as in pure annihilation.

That is clearly true for a discrete system, where there is a A iy+B—A+A,+B, (29)
minimum cluster mass and the fragmentation process ends Y Y
before all particles annihilate. and the annihilation oA is induced by a cataly<t. With a

nonlinear annihilationreaction(modelC1),

B. Linear annihilation (model 2 .
] ] ) A;+A,+C—inert+C, (30
Here, we briefly discuss model 2: a model with the same

fragmentation process as model 1 but witrear annihila-  while with alinear annihilationreaction(model C2)
tion. In this case there are no binary reactions and single
clusters annihilate at a constant rate in time. We introduce A+ C—inert+C. (31
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In addition, we allow the catalysts to undergo the following
annihilation reaction, at ratg:

R
B+ C— inert.

(32)
In the reaction-controlled regin(t) andC(t), the concen-
trations of specie® andC, have the following time depen-
dence(see, e.g.[25]):

B(0)
B(t)ZC(t)Zm [B(0)=C(0)],
B(t) = AB(0)exd —ARt]

C(0)—B(0)exg —AR{]’

C(t)=A+B(t) [C(0)>B(0)], (33

with A=|C(0)—B(0)|. Note that if B(t) and C(t) were

constant in time, then, via a trivial rescaling, modéls and
C2 would reduce to models 1 and 2 without catalysts.

A. Method of solution

J. A. N. FILIPE AND G. J. RODGERS

5_4
A= AB JAZC 38
Rborn N %
with the solution
A.(0)/A,](by+ 7)1
AL [A1(0)/A5](bo+7) a9

1+ J[A1(0)/A,]f5dt' C(t")[by+ 7(t") ]

As in Sec. I, expdfdt’AC) is simply the denominator of
A in (39). Hence, from(21), (22), and(36) we find

M(t)=(bo+7_)m.

A(t)

An(t):An+1W1 (40)

M, At)
—FeX

T(1N) M(1)

a(x,t)= H — (bo+ 7)xM].

The essential differences frof@7) are due to the presence of

We shall solve the generalizations of models 1 and 2, withr(t).

general values oh, following a similar procedure to that

We now turn to modelC2, for linear annihilation in the

used in Sec. Il. The essential difference now is that a formapresence of catalysts, defined by the reaction sché@®s

time variable has to be defined(t), which plays the role of
timet in the previous models.

Model C1, for nonlinear annihilation in the presence of
catalysts, is defined by the reaction schert®® and (30).

The kinetic equation for the cluster-mass distribution, which

generalizeg19), is

a(x)= —x"a(x)+2fwdy)3"la(y) B—Ja(x)AC, (34

while the equation for the moments afx,t) now readqcf.
(4) with «=0]

1-n

AnzmAmB—JAnAc. (35)

and (31). The kinetic equation foa(x,t) is similar to (34),
but with the nonlinear term replaced byJa(x)C. Defining

’

b(x,t)Ea(x,t)ex;{Jf;dt’C(t’) (41

and using the same formal time variabig), b(x,7) obeys
Eqg. (20) once again, and we work with the special exponen-
tial solution as before. The results, therefore, follow from
(21) and (22 (with 7 replacing t) multiplied by
exd —Jftdt'C]. This gives[cf. (28)]

A4(0) s

M (D exp{ Jfodt C(t )}

A(t)= (42

For A=1, a closed set of equations can be obtained onceith M(t), A,(t), anda(x,t) still given by (40).

again, from which the general solution fé&(t) and A,(t)
can be found. For general, we map(34) onto a pure-
fragmentation equation using the transformatioh (12)]

b(x,t)Ea(x,t)exr{Jjgdt’A(t’)C(t’) , (36)
and redefining time as
t
r(t)=J0dt’B(t’). (37

Clearly, one only expects a scaling regime to occur if
7(t) -0 ast—oo. Thenb(x,7) obeys Eq(20). As usual, we
work with the special exponential solutiq®21) (now with

7 replacingt). Inserting this solution intd36), integrating
overx, and differentiating once with respect to timgields
the self-consistent equatigof. (25) and (26)]

B. Asymptotic results for B+ C—inert

The results derived in Sec. Il A for mode31 andC2
hold for any time dependence of the catalysts. To obtain the
asymptotic behaviors corresponding to catalyBtsand C
mutually annihilating according t2), we insert the mean-
field expressiong33) into the previous results and look for
the dominant contributions in the limit— . There are three
qualitatively different cases, depending on the relative values
of the initial densities of the catalysts.

1. B(0)=C(0)
With balanced amounts of the two catalysts, we have

r=In[1+RB(0)t]"R=In(t'R) (t—x). (43)

This gives
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LR IN[B(0)/ATR
M(t)zW (t—w), IxEJO dx[by+x+In{C(0)/[B(0)
An(H)~M(DA(1), (44) — Aexp(RYJHRIM. (49)

A) In this case the fragmentation process is much faster than the

_ PN _ annihilation one, which is suppressed as the mass density

alx.t) M(t)exp[ &l =AM tends to a fractiorF(\) of its initial value A;(0). Once
again there is a scaling regime. In conclusion, the asymptotic

for modelsC1 andC2, and behaviors of model€1 andC2 are similar to that of a pure
fragmentation process with rescaled initial mass density

1+ R 1 A1(0)F(MN) and rescaled timat, whereA is the residue of

N JIn(D) (@R (modelCl) catalystB. Hence, the smaller the value Afthe longer the

A(t)= n time needed to reach this regime. The valué=¢k) is de-

A1(0) 1 _ [In(t)] (modelC2) termined not only by the kinetic parameteksR, and\, but

M(t) [B(O)Rt]R t/R ( ' | also by the initial densitieB(0) andC(0).
45

3. C(0)>B(0)

With a majority of the annihilation catalyst tends to a
nite value,

As in models 1 and 2 without catalysts, the late-time regime
is dominated by the annihilation of small-mass clusters, th(?.
two underlying processes decouple from each other, and

there is scaling. The cluster-number density, however, de- T:|n{[c(0)_B(O)exq_ARt)]/A}llR
cays logarithmically in modeC1 and with a nonuniversal
power law in modelC2: the nonuniversal exponent depends —7,=IN[C(0)/ATR  (t—0). (50

on the annihilation rated and R of speciesA and of the
catalysts. We conclude that, although different time depenNoticing that the integral in the denominator @89),
dences emerge, the balance between the annihilation ad@dt’ C(t")[bo+7(t')]**, is dominated by the largecon-
fragmentation processes in this symmetric case is analogotigbution, we obtain
to that occurring in the absence of catalysts.
M(t)=M.=Az/(bo+ 7)™ (t—),
2. B(0)>C(0)

AL(H)~A(1), 51
If there is a majority of the fragmentation catalyst the n(O~AM 6D
auxiliary time 7 behaves essentially like a(x,t)~At)exd — (bo+ 7..)x*]
7=At+In{[B(0)— C(0)exp( — ARD /AP for modelsC1 andC2, and[cf. (26) and (28)]
=At (t—x). (46)
(modelC1),
The key point to notice when evaluating the integral in the At)= Jat
denominator 0f39) and the exponential term i@2) is that ] A0)[ A VIR
Jidt’C(t')—In[B(O)/A]*R ast— . This yields, for models M. | C(0) ex —JAt] (modelC2).
C1 andC2, (52)
2 Here, the annihilation process dominates over fragmentation.
M(t)= (AN (t—=), The latter is suppressed as the average cluster mass tends to
a nonzero valuév,, and the mass distribution becomes sta-
A =[A;(0)/A,TF(N) (A, 4 tionary (up to an overall time-dependent fagtand identical
(O=[A(0)/A-]F(M)(AL) 47 o its initial form a(x,0). This form ofa(x,t) follows from
all fragments being equally likely to annihilate, and the pref-
Ay(t)— AL (0)F(N), : S e i

actor A(t)—0 indicates the eventual loss of all mass. This
situation differs fromB(0)=C(0), where annihilation oc-
curs between increasingly smaller clusters. As expected,
there is no scaling regime sineehas a finite limit. In addi-
tion, the behavior o&(x,t) may not be universal in this case.
where In conclusion, the asymptotic behavior of mod€l& and
C2 is similar to that of a pure-annihilation process with
1 M=M,, and rescaled tim&t: the process being a binary
1T IA(0)L/A, (modelC1) reaction for modelC1, and linear with initial mas#,(0)
F(\)= IR (48) X[A/C(0)]Y'R for modelC2. The asymptotic average mass
(i) (modelC2) M., is determined by the kinetic paramet&sand\, and by
B(0) ' the initial valuesA(0)/A,(0), B(0), andC(0).

1
a(x,t)~ Wexq— M, =AXIM(1),
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It should be stressed that the validity of the continuous-C2, would merge to yield a model with linear and nonlinear
mass description used throughout is subject to restrictions iannihilation terms. It should be possible to solve such a
the long-time regime. In the caseB(0)=C(0) and model using the methods of Secs. Il and lll. It may also be
C(0)>B(0), where the cluster numbeh(t)—0 and the that one has a source rather than a sink term, in which case
system eventually reaches an empty state, the descriptiahe previous terms will have opposite signs leading to a com-
holds while the system still contains a sufficiently large num-petition between linear and nonlinear contributions.
ber of particles. This condition ensures the smoothness of the Further directions of work are possible, in addition to
cluster mass distribution. In the cas&0)=C(0) and those just mentioned. One may look for mass-dependent re-
B(0)>C(0), where the average cluster madgt)—0 and action rates, the generic form for the annihilation terms then
increasingly smaller fragments are produced, the usual reseing —Ja(x)[5dyf(x,y)a(y) for model 1, and
strictions to a pure-fragmentation process apdig]. The  —ja(x)f(x) for model 2.[In Sec. Il A we mentioned the
essential difference within a discrete description lies in thecasef(x,y) = (xy)“.] Another research avenue would be to
behavior of the denSity of the smaller fragments, or monO'investigate two Species' Say and B, undergoing fragmen-
mers. tation and mutual annihilation. Whe&(0)=B(0) this
model is identical to the single-species model of Sec. Il A.
With two species, a “charge” conservation law may also be
present, e.g.A,+By—A,_, for x>y (B,_ for y>x) [1].

We have solved a class of fragmentation models withWe have found26] that in the absence of such a constraint
nonlinear mass loss, at the mean-field level, and elucidateldoth cluster densitiesA(t) and B(t) decay as 2/t)
the competition between fragmentation and annihilation pro{A\=1), independently of the initial masse&,;(0) and
cesses. Simultaneously, we have analyzed the correspondi@g(0); i.e., there is no mass difference residue.
models with linear mass loss. Although the solutions for the We expect the classes of models studied here, and their
cluster-mass distribution hold for exponential initial condi- further developments, to have applications in various sub-
tions, we expect their moments to be identical to those of thgects, such as physics, chemistry, biology, and, to some ex-
corresponding general solutions. tent, population dynamiosee, e.9.,23,24]). Model 1 (with-

Asymptotically, models 1 and 2without catalysts are  out catalysts is suitable to describe fragmenting systems
characterized by the annihilation of small-mass clusters andith nonlinear(reaction mass loss. Model€1 andC2, on
by the effective decoupling of the two underlying processesthe other hand, have the potential to describe a broad range
We believe that in this case the upper critical dimension is 2f phenomena, with linear or nonlinear mass loss and with
(but se€[14]). arbitrary time dependences of the catalysts. We describe one

ModelsC1 andC2, with fragmentation and annihilation particularly important generalization to these models. In
catalysts, have been solved for a general time dependence @fany processes of industry, heterogeneous chemistry, or bio-
the catalyst densities. The linear annihilation model, in parchemistry, such as food processing or food digestioinere
ticular, shows much more interesting and less trivial behavthe catalysts are enzymeshe efficiency of the reactions
ior in this case. WheB andC undergo mutual annihilation, may depend on the available surface area of the reacting
we have found that different interplays arise between the twéragments(see, e.g.[27]). It would be of great interest,
intervening processes depending on the initial densitiegherefore, to develop fragmentation models whose clusters
B(0) andC(0). As aresult, unconventional and/or nonuni- are characterized not only by theiolume(or mas$, but also
versal asymptotic behavior may ocd(0)=C(0)], or the by their surface areaFrom these, one could then build up
scaling regime may be absgr€(0)>B(0)]. In these mod- fragmentation-annihilation models with surface-area-
els, the upper critical dimension is likely to be 4, as a con-dependent annihilation rates. An obvious difficulty in con-
sequence of the spatial structure induced by the catalytic restructing such models is the dependence of the surface area
actants at late times: iB-rich regions fragmentation on the shape of the fragments. First steps towards this goal
(annihilation) will be frequent(absentproducing a high con- have been taken in very recent work on multivariable frag-
centration ofA, while in C-rich regions the roles of these mentation[28].
processes will be reversed, producing voidsfofWith si- It is interesting to note that there is some resemblance
multaneous fragmentation and annihilation it seems difficultbetween  fragmentation-annihilation processes and
however, to develop more quantitative arguments determinbranching-annihilating random walk&9]. In the latter, par-
ing d¢. In any case, new, unusual behavior should also apticles diffuse and annihilate upon encounter and each particle
pear atlower dimensionsn the presence of catalysts. Even gives birth ton offspring, at prescribed rates. A difference,
here, the mean-field description may prove adequate up tihough, is that the particles do not have a mass distribution.
moderate times, before significant spatial fluctuations set inDepending on the branching and annihilating rates, these

Instead of the mean-field expressidB8) for the catalyst Systems may evolve towards an empty state or an active
densities, one may use the corresponding ones in thsteady state. The existence of phase transitions in the long-
diffusion-controlled regimed<4), which can be deduced, time behaviour has been investigated for different values of
e.g., from Ref[25]. In addition, other reactions or time de- n [29]. Depending on the densities of cataly&tich con-
pendences of the catalysts may be investigated. One mdgol the rates of the two processes involyede have found
even replace one of the catalysts byiahibitor. For these that modelsC1 andC2 can also exhibit quite opposite as-
purposes one simply needs to use the results of Sec. Il A. Igmptotic behavior:A—0 for C(0)=B(0), and A—x for
practice, it may be that both linear and nonlinear mass-losB(0)>C(0). Although we have not seen evidence for states
processes operate. In such cases, models 1 and®@ and characterized by steady values of the cluster-number density

IV. CONCLUSIONS
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lieve that fruitful applications of the present or related mod-cesses. We are indebted to Adil Hasan for a careful reading

els (especially those with catalystsan be found in various  of the manuscript and useful remarks.

fields.

[1] P. L. Krapivsky, Physica A 98 135(1993.

[2] I. M. Sokolov and A. Blumen, Phys. Rev. 3D, 2335(1994).

[3] E. Ben-Naim and P. L. Krapivsky, Phys. Rev. 32, 6066
(1995.

[4] W. R. Johnson and C. C. Price, J. Polym. 84, 217 (1960);
E. W. Merril, H. S. Mickley, and A. J. Ram, J. Polym. S6R,
S109(1962.

[5] A. M. Basedow, K. H. Ebert, and H. J. Ederer, Macronddl,
774 (1978.

[6] P. A. Glynn, B. M. van der Hoff, and P. M. Reilly, J. Macro-
mol. Sci. Chem. A6, 1653(1972.

[7] R. Shinnar, J. Fluid. MecHLO, 259 (1961).

[8] R. Meyer, K. E. Almin, and B. Steenber, Br. J. Appl. Phyg,
409 (1966.

[9] L. Ouali and E. Pefferkorn, J. Colloid Interface Stb1, 237

[16] E. D. McGrady and R. M. Ziff, AIChE J34, 2073(1988.

[17] B. F. Edwards, M. Cai, and H. Han, Phys. Rev.4A 5755
(1990.

[18] R. F. Machado and J. K. L. da Silva, Phys. Rev5E 6037
(1995.

[19] Z. Cheng and S. Redner, J. Phys28, 1233(1990.

[20] O. Saito, J. Phys. Soc. Jph3, 198(1958.

[21] S. Redner, irBtatistical Models for the Fracture of Disordered
Media edited by H. J. Herrmann and S. Ro(Morth-Holland,
Amsterdam, 1990

[22] A. F. Filippov, Theory Probab. ApplUSSR 6, 275(199J).

[23] J. D. Murray,Mathematical BiologySpringer-Verlag, Heidel-
berg, 1993.

[24] G. Nicolis and I. PrigogineSelf-organization in Nonequilib-
rium SystemgWiley, New York, 1977.

(1993; D. Beysens, J. M. Petit, T. Narayanan, A. Kumar, and[25] K. Kang and S. Redner, Phys. Rev. L&2, 955(1984.

M. L. Broide, Int. J. Phys. Chen®8, 382(1994.

[10] R. M. Ziff and E. D. McGrady, J. Phys. A8, 3037(1985.

[11] R. M. Ziff and E. D. McGrady, Macromoll9, 2513(1986.

[12] P. G. J. van Dongen and M. Ernst, J. Stat. Pi8/a. 301
(1984).

[13] T. Sintes, R. Toral, and A. Chakrabarti, Phys. Re\ad=2967
(19949.

[14] F. Family, P. Meakin, and J. M. Deutch, Phys. Rev. LB,
727(1986.

[15] J. A. Blackman and A. Marshall, J. Phys. 2%, 725(1994.

[26] J. A. N. Filipe (unpublishegl

[27] B. Sapoval, inFractals and Disordered Systepedited by A.
Bunde and S. HavliiSpringer-Verlag, Heidelberg, 1996

[28] G. J. Rodgers and M. K. Hassan, Phys. Rev5®& 3458
(1999; P. L. Krapivsky and E. Ben-Naim, Phys. Rev.58,
3502(1994.

[29] D. ben-Avraham, F. Leyvraz, and S. Redner, Phys. R&50,E
1843 (1994; S. Kwon and H. Park, Phys. Rev. ®, 5955
(1999; D. Zhong and D. ben-Avraham, Phys. Lett2R9, 333
(1995.



